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Page 8, equation (10): The second term on the right side should be
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Page 7: The second eguabtion following equation (15) should be
7=-1 instead of T = O.

Page 8, equation (18): A bracket should be inserted between Jolar)
and Cl. The bracket should be closed at the end of the equation.

Page 8, last line: The sentence should read, "A sketch of the stream-
lines in a radial section is given in figure 5."
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NATURAY, CONVECTION INSIDE A FLAT ROTATING CONTATNER

By Simon Ostrach and Willis H. Braun

SUMMARY

Froude number 1s found to be the parameter thet determines the ef-
fect of body rotations on internsl natural convection flows. Explicit
forms of Froude number are debermined for the casés of predominant rota-
tion and predominant axial force. In a heated cylindrical container no
significant convective effects are generated by rotatlons alone. More-
over, rotation tends to inhibit the flow and heat transfer generated by
an axisl body force im such a configuration. Insertion of radisl vamnes
in the container eliminastes the detrimental effects of rotation and im-
proves the heat transfer.

INTRODUCTION

A novel spplicetion of natural convection to yleld a lightweight,
efficient, and simple heat sink is described in reference 1. The scheme
described therein, which permits turbine blades to operate successfully
ir & high-temperature gas, is that & liquid is circulated through cylin-
drical cavities in the blades by natural convectlion generated by centrif
ugal force. One might then wonder whether the same idea might also be
employed in another difficult problem, namely, that of cooling a high-
speed vehlicle entering the esrth's stmosphere. In such & case, two body
forces are gvallsble, the force of retardetion by the atmosphere and the
centrifugal force generated by the rotation of the vehicle sbout its
axls.

Despite the practicel demonstration of the basic 1dea in reference
1, relatively little information on natural convection exists for inter-
nal flows and for body forces which vary temporally or spatlially. The
problem of natural convection in a reentering vehicle is further compli-
cated by the simultanecus action of the two kinds of body forces in dif-
ferent directions.

This paper, therefore, presents an anslysis of a somewhat idealized
configuration which, nevertheless, contains some of the complications
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assoclated with actual problems. In this way, the primasry factors in-
fluencing the phenomenon are determined, and the relative importance of
some of the interacting effects can be evaluated. This work thus repre-
sents an inditlal study of the use of flulds driven by body forces for
heat sinks in rotating reentry vehicles.

DEFINITION OF THE PROBLEM

A fluid contained in & hlgh-speed vehicle which enters the earth's
atmosphere 1s subject to an apparent gravitational force. A represent-
ative decelerstion curve for such a vehilcle celculated from the equaiions
in reference 2 is presented In figure 1. Clearly, the body force is
strongly time-dependent. If a representative calculation of the heat
flux to the vehicle made from reference 2 is superposed on figure 1, it
can be seen that & lag exists between the heating of the body and the
appearance of a large retardation force. During the Initisl period of
heating there is no drlving force for the convective cooling process.
One wonders whether the heat transfer to the internal fluid might be in-
creased by rotating the vehicle nose sbout its axis. Centrifugsl force
would then generate the motion as in the turbine-cooling problem.

Rotation may be of value even after the decelerating force has be-
gun to act. The decelerating force acts in the axial directlon (see fig.
2) while the internal fluild near the external stagnation point of the
blunt nose 1s heated from below; that is, the heating in the stegnation
region imposes a negeatlve temperature gradient parallel to the retarda-
tion force. In such a configuration the fluid remains at rest unmtil a
cripical value of the Rayleigh mumber (PrGr) is attained (see ref. 3).
Thus, even for apprecisble retardetion forces, the internal fluid is in-
effective as a coolant. Therefore, & large body force (such as a cen-
trifugel force) transverse to the temperature gradient might increase the
effectiveness of the heat sink by starting the motion sooner. Also, the
rotational effects must be evaluated because rotation of the vehlcle may
be used for aserodynamic stability and, therefore, be inherent to the
system.

Specific comsideration is gilven in this report to the flow and heat
transfer of a fluid subject to an axisl body force inside a rotating-
right circular cylinder of small height (see fig. 3). In this way, the
rotational effects can be evaluated, and internal condltions in the vi-
einity of the external stagnation region of blunt bodies are simulated.

In order to avold the complications introduced by unsteady effects, we
shall assume that the retardation force is constant and concentrate on
the effects of rotation of the vehicle on the internal flow. Therefore,
two cases will be considered: (1) where rotation predominates, that is,
where the internal motion 1s essentially due to rotation of the container;
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and (2) where the decelerstion force predominates, that is, where a flow
is generated by the axial body force with heating lrrespective of whether
the container is rotating.

ANALYSIS

The governing equatlons for the coolant are those expressing the
conservation of mass, momentum, and energy in cylindrical coordinates
for compressible, viscous, and heat-conducting flulds subject to a body
force. With fluid properties constant, these equetions are, respectively:

Contlinuity:
S+ () + 2 g, AWM (1)
Radial momentum:
i} 3 .V U , . W vz) 3P ( U 2 av) b dX
U—=+— W == - = VZU-—-— = —
DE“’( = 7 % 'R T3 S )
(2)
Azimuthal momentum:
oV .V oV ov , UV 1 oP
o F et H v D)1 F
2 o0U V B oX
+ V2V+—: - == - 3
P-( r-a-é r2)+3r§-é ()

r r

P3P CERM) = Al
Energy:
pcvg%+pcv(u%i%%+w%)=kv2m+¢-Px (5)
where
1
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All symbols are defined in sppendix A.

Predoninant Rotation

The case of predominant rotation simulates conditions encountered
by an internal fluid, both during the time shortly after reentry when
the deceleration force is negligible and in the stagnation region before
a flow has been established by the instability.

The state equation
p = p(T,P)
for a fluid may be approximasted near a reference condition (0) by
D'—'Dol'B(T"To) "'E(P"Po)]

where p 1is the coefficient of volume expasnsion and ¥ is the isother-
mal compressibility. It can be shown from the conservation of mess in
the closed vessel to be considered here (fig. 3) that, 1f the hesting
(temperature difference) on the bottom and the cooling on the top are
identical. functions of the radius, and if there are no azimuthal or axial
gradients of pressure, the pressure difference (from the reference state)
vanishes identically. It is assumed here that the fluld in the container
is heated and cooled symmetrically as descrlbed and that, even though
some pressure gradients may exist, they have little effect on the density.
(If a net heating of the contained fluid is desired, a small bulging of
the container, properly distributed, will compensate the pressure incre-
ment.) Then, as for unconfined flows,

p= Po[l - (T - To)]

Axisymmetrle flow is assumed in the cylinder of figure 3. The char-
acteristic velocity of the fluld must be proportional to QR, and it
should depend on a representative tempersture difference between the
heated and unheated states. Let Tg be the temperature of the unheated
state and T, +the temperature at the center of the lower (heated) plate.
By the condition of symmetric heating and cooling, the temperature at the
center of the upper plate is T, - (TI - To). If the temperature and
density of the fluld are written as

T = TO + Z(Tz - To)‘l'

| 6T8Y
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and

p = po[l - 28(T, - To)'r]

it is apparent that the perturbation parameter for the system is
e = 28(T; - Ty). The analysis of appendix B, beginning with a general

power dependence of the characteristic veloeity upon €, shows that only
& linear dependence is consistent with the dynamics of the problem.
Thus, the representative velocity is e0R.

* It is now convenient to transform to dimensionless wvarisbles in a
rotating system as follows:

T=Rr, 6 =0 +Qt, z = hz

U= €QRu, V

QR(r + ev), W = eQR(1/R)w (8)
2

DdQZR (PO + €p)

The basic equations (1) to (5) to zeroth order in e reduce to

ap0 e aPO _ fh
> - Y3 T (QR)Z

P

which imply & solid-body rotation of the fiuid when there is no heating
(e = 0). To first order in €, that is, the perturbations from solid-
body rotation due to heating, equations (1) to (5) are

g% {ru) +-§% (rw) = 0 (7)
G 2
Ei;% <?-%% + w-%% -'%? + 27v> + rT - 2v = --gE
2/\2 2 Gr, 2
1 h u, 1l u %uf, 1 YTg (n\° o oSt ot
* Roq [(ii) gﬁ*?&‘?)*g‘]+3;eg(§) > (uaﬂ”"'s') (8)
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The ratio Reg/Grg is actually a Froude number and represents the

ratio of inertia to buoyancy foreces. In this particular case under con-
sideration, the Froude number is large; in fact, from the definitions of
the Reynolds and Grashof numbers based on _Q, the reciprocal of the Froude
number is just €. Therefore, the dominant inertia terms are the buoyancy
and Corlolis terms, that is, the last two terms on the left side, respec-
tively, of equation (8) and the last one on the left in equation (9). 1In
the energy equation the convection and frictional heating terms are neg-
ligible with respect to the conduction term so that the heat transfer 1s
not affected by the motion and is merely due to conduction. All this im-~
plies, of course, that large veloclities cannot be obtalned by applylng a
temperature gradient transverse to the centrifugal body force in such a
rotating configuration. To understand thls seemingly unusuasl result, let
us solve the equations that result by omitting the negligible terms and
assuming h/R <<1. Also, the parameter X, is small for practical
cases.

Equation (7) is unchanged, and equations (8) to (11) become,
respectively,

1 3% %5
—_— oM -2 12
ReQ ~ + rT v ( )
1 Bzv
= =1 = 2u - (13)
Reg az

%:o . (14)

ATRY
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P

5E 0 (15)

The boundary conditions on the upper and lower surfaces (z = il/ 2)
are
u=v=w=_0
At the upper surface, also,
T=0

The thermsal boundaery conditions at the surface will be discussed
a posteriori. .

By following Davies (ref. 4) the velocity ‘and temperature distribu-
tions are written as

u = -3 I (ar)T(z) w Jo(a.r)ﬁ(z)

v = g J1 (ar)V(z) T 'o%r' J1 (ar)T(z)

where - J‘O(a.r) and J;(ar) are zero- and first-order Bessel functlons,

respectively, and « 4is the first root of Jl(m) = 0. Qualitatively,

the assumed radial variations in wu, v, and w lead to the loop flow
shown in figure 4. The viscous boundary conditions at the radial bound-
ary (end) of the cylinder are satisfied by u amnd v, but for the w
component the viscous conditions are replaced by a slip_condition. This
is conslstent with the omission of terms of order (h/R)2 in the differ-
ential equation.

The system of equations (7), (12), (13), (14), ard (15) can be com-
bined to yield an ordinexry equation for V:

(Reg)zvv + 4V = -2
with the boundary conditions
V(1/2) = V(-1/2) = 0, V' (1/2) = V' (-1/2) = 0, ¥'(1/2) = V" (-1/2) = 0

Solution of this boundary value problem then ylelds

éJl(cr,r) (Cl s:l.nhw/Ren z cos~/Reg z - Cy cosh~/Req z sin~/Reg z)

(16)

u
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v = .S Jl(ocr) <Cl cosh-\/Ren Z sin-\/Reg-2 z + Co sinh-,/ReQ Z cos-,/ReQ z - % z)

(17)
~/R +/R /R 1/Re
v = — Jo(our)cl<sinh zen sin ——ZE + cosh Zen cos -Tn
ﬁ/ReQ
~/Re /R -/Re -,/ﬁ
+ Cslcosh 0 cos 0 - sinh it sin !
2 2 2 2 2
- Cl<sinh-\/ReQ z sin Res-z 2z + cosh-\/ReQ Z cos-\/ReQ z)
- Cz(cosh-\/ReQ z cosq/Reg z - sinh-~/Reg z sin-/Reg z) (18)
2
=2 J - 9
p=0
where . -
VB /R _Reg  ofReg
cosh 5 sin X sinh > cos >
¢, = : O, =
1 ’ 2
R -\/R +/R -+/Re
4(sinh2 zen + sin® zen) 4(Sinh2 zen + 5in® — “)

The dimensionless temperatures of the plates 'r(r, x -32-') are, from equa~
tion (19), equal to ¥(1/ar)J;(ar). Any other temperature distrﬁbu‘bion

could be specified at the lower surface by expanding artir,- -12-' in g
series in Jj.

The velocity distributions (egs. (16) to (18)) are presented in fig-
ure 4. A strong Reynolds number effect is evident. For low Reynolds
numbers the viscous effects are present over the entire cross sectlion of
the cylinder, but at the high Reynolds number a boundary layer appears
in all three veloclty component profiles. Accompanying the boundery layer
is a diminution of the radial and axial components of velocity in the main
body of the fluid while the azimuthal velocity distribution is nearly
linear, lagging the rotation of the cylinder in the upper half and leading
in the lower half. A sketch of the streamlines is given in figure 5.

TN
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Since the equations of motion have been solved, it is possible to
explain why, physically, the velocities remain smell. The driving force
rv in equation (12) 1s opposed by the pressure gradient, Coriolis force
(-2v), and viscous force. The pressure gradient balances that part of
the driving force which is independent of =z. At low Reynolds numbers
the remainder of the driving force 1ls opposed mainly by the viscous
force, but at large Reynolds numbers the Coriolis force grows relatively
lerger and inhibits the flow. Consequently, the heat convectlon is neg-
ligible both for large and small Reynolds numbers, and the fluid essen-
tially rotates as a rigld body.

Figure 6 1s a graphical illustration of the Corilolis force in the
top of the cylinder. The Coriolls force has negative components in both
the radial and angular directions. It opposes the azimuthal rotation of
the fluid by the viscous force and the outward radisl flow set up by the
buoyancy foree.

It may be that flows of a cellular type will be obtained in this
configuration if h/R is not negligibly small and the condition of axial
symetry 1s relaxed. However, it is doubtful that even then the heat
transfer would be affected by the fluid motion. Thus, rotating a fluid
container like that just considered does not significantly affect the
heat transfer when the deceleration force is inoperative. In fact, the
rotation may even be detrimental, for Chandrasekhar (ref. 5) has shown
that in an unstable configuration the fluid motion is delayed by the ac-
tion of Coriolis forces.

Since the Coriolils force due to the circumferential velocity compo-
nent opposes the radial buoyasncy Fforce and thus negates convection effects
and also may lmpede the unsteble motlion, it sppears that significant con-
vection could be obtained if the Coriolis forces were made negligible
compared to the centrifugal force. The insertion of radial vanes appro-
priately spaced would arrange the circumstances by reducing the azimuthal
velocity component (and, hence, the corresponding Coriolis_term). The
buoyancy effects due to centrifugal force would, in this way, be unop-
posed (excepting viscous forces) and could lead to large heat convection
as in the turbine blades investigated by Schmidt (ref. 1).

Conslder a sector between two vanes in such a divided flat cylinder
(fig. 3(b)). It is anticipated that, in contrast to the previous con-
figuration, the inertia forces will be of the same order of magnitude as
the buoyancy forces. It follows that the representative veloclty must
be q/EQR rather then eQR. Then, upon the equations of motion (egs.
(1) to (5)) the following transformation to a dimensionless, rotating
system is performed:

T = Rr
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e = (&p)y + at

z = hz
U = +/e0Ru
V = QRr + +/eaR(Ap)v
W = +/eqhw

The new asngulsr varisble y ‘tekes values from O to 1. Again, the
state varisbles are given by

P

P02 “R2(p, + €p)

ko)

= po(l - eT)
T = To = ZT(TZ - To)

The trensformed equations, with the smsll compressibility and dissipation
terms omitted for simplicity, are

No heating:
Por =T
Poy =0
a fh
Poz = - (Q.R)z
Continuity:
(ur)y + vy + (xw), =0
Momentum:

. 6187
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Energy:
2 2 T
¥ _r _1 _b_ (2) Ir
u'rr+r'ry+w'rz_Pr = l}zz-*-(RAqJ‘) TW+R Trr"'r .

If the sector is made slender by setting

%<<J_,App<<l

the momentum and energy equations reduce to

2
uur+-£uy+wuz+rr--a—‘j§2\f == [‘1ZZ+(§£A—CE) UW:I

I
]
L]
H
%7
o}

&211:-}.:9
€ r

N

.o

(QR)Z Z
2 2 42
v . _h_ (3) Yz
uTr+rTyy+WTz.‘Pr o [rzz"'(RAq)) TW]"'YKnh oz,

In these equations the inertis and heat convection terms are sig-
nificant in contrast to the previous case of the complete cylinder. The
presence of the new parameter AP controls the Coriolis force and mskes
this possible. The magnitude of the Coriolis terms is determined by the
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square root of & Froude number AP/-/€, and the ratio h/(R Ap) controls
a portion of the viscous force. Meking AP very small reduces the
Coriolis force by preventing the acceleration of the fluld to appreciable
azimuthal velocities relative to the rotating system. At the same time,
however, the ratio h/(R Ap) may become large, which indicates the flow
has become constricted and ceuses large viscous retardation. Probebly
an optimum geometrical arrangement would be_

D<op <

618¥

The previous equations resemble those for natural convection over
& heated vertical flat plate. However, the driving force here is the
centrifugel force, which can be many times larger than the earth's grav-
itational force. Hence, the convectlve heat transfer in such a rotating
configuration can be much larger than that due to gravitational effects,
as was demonstrated in the Schmidt turbine (ref. 1).

It can be seen from the equations that the Coriolis and viscous
forces in a rotating system will always have their adverse effect. ALl
this means, however, is that convective heat transfer produced by cen- -
trifugsel forces in & rotating sector can never be as large as that over
a flat plate in a gravitatlional field of corresponding magnitude.

Predominant Deceleration Force

The effects of rotation on a flow generated by the deceleration
force must still be evaluated because the reentry vehicle may be rotating
about its axis for serodynamic stability reasons. The deceleration force
will establish flows in & flat cylindrical conflguration (fig. 3) after
the critical Rayleigh number is surpassed. Also, if the retardation force
is transverse to a temperature gradient, as it would be, for example, in
a curved container like & spherical shell, it would immediately generate
a conventional natural convection flow. Let us, therefore, analyze the
case where the flow is essentially due to the retardation force.

Tor the inertis and buoyancy forces to be of equal order of magni- ~

tude, the characteristic velocity must be -/efh. Accordingly, meke the
following trensformstion from the inertisl coordinates to dimensionless

rotating coordinates:
h
U = «/efhu V= 1/efhv + OQRr W= R -/ efhw
T = Rr 6=0¢+ 0t z = hz

P = pofh(py + €p) p = po(l - €7) T= (T - Tg)/2(Ty - Tp) .
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In general, u, v, and w are functions of the angular velocity as
well as the coordinates. Note that, if @ is zero, the flow is due en-
tirely to the action of the axial body force and the heating. On the
other hand, for no heating the flow 1s again & solid-body rotation. This
is clear from the equations since, for € = 0, equations (2), (3), and
(4) become, respectively,

%y  (aR)Z Py
x STt o %=°’ % -1

When ¢ 74 0, and again when small compressibility and dissipstion terms
are omitted, the equations of motion become, to lowest order in e,

.ga;(ru)+%+§—z(rw)=0 (20)

EHE OGS 30 @
ug;;+%%+wg—:+m1+ﬁ=_%%
r 23 :TZV”’@)Z@*%B??%*}%%‘%) (22)
B (Z 1 d)--2.-
Gl RO RSt

or , v OT ot 1 R [ n\2(3%r 13t . 1 3¢
EtTR T V& "I =k —é‘*(ﬁ)(a—*;s;’f;‘—z) (24)
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In these equations,

0= IR —\/GrE@

The paremeter ® 1s proportional to the Froude number. In the case
being considered here - @ assumes small values by definition because the
numersator depends on the rotation and the denominator depends on the
(predominant) retardation force. (In the previous case, the inertie and
buoyancy effects both depended only on the rotation with the consequence
that the Froude number was independent of rotation.) Therefore, with

® <1, the inertis terms in equations (21) and (22) having ® as a co-
efficient are, at most, of the same order as the other like terms. The
equations look like the conventional boundary-layer equations, and the
inertia and convection effects are important. The heat transfer will be
greater then that due to conduction alone.

An examination of the foregolng equsastions shows that & steady cellu-
lar flow, as occurs with heating a horizontal surface from below (ref. 3),
is affected by a small rotation to a different order of magnitude than an
axisymmetric flow. Comslder first the cellular flow. With @ = O, the
three velocity components of each cell are of the same order of magnitude.
The first momentum equation (eq. (21)) shows that the rotation will affect
this flow to first order in . The preceding analysis of the flat cyl-
inder with rotation only and the analysis of the unstable static config-
uration {ref. 3) suggest that the effect will be adverse. Thus, it is
expected that, in cellular flow gemerated by an axial body force, rota-
tion will reduce the healt transfer.

Second, consider a steady axisymmetric flow with zero azimuthal ve-
locity component. When & small rotation is imposed, the azimuthal veloc-
ity 1is properly represented by

Vo= (DVl

Since the property of axisymmetry is retained (3/dp = 0), it is evident
that the equstions are affected (through the Coriolis and centrlifugal
force terms) only to order w?. Consequently, the rotation will have
negligible effect upon this type of natural convection flow.

CONCLUSTONS

The analysis presented herein indicates that the Froude number is
the parameter that determines the relative effect.of body rotation on
internal natural convection flows. In flows with large Froude number
(e.g., motions induced solely by rotation of a heated cylinder), the

:
VS
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action of the Corioclis force prevents appreciable convection of heat.
Although the Coriolis force inhibits convective heat transfer somewhat
even for Froude numbers of unit order of magnitude (rotating sector),
considereble convection is obtained because the driving force can be
greatly increased. Flows that have been set up by & strong external
body force have a small Froude number and are not greatly affected by
rotation of the container, especially if they have axial symmetry.

A practical conclusion to be drawn from these results concerns the
use of large centrifugal forces to drive natural convection cooling.
Such a scheme will be successful only if the Coriolis force is reduced
by limiting the azimuthel extent of the cooling passage. This, in turn,
increases the viscous forces. Nevertheless, such cooling arrangements
can greatly affect heat-transfer rates, ylelding rates many times higher
than those using the gravitationsl fileld, as shown by Schmidt's tests on
turbine blades.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, June 17, 1958
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APPENDIX A
SYMBOLS

See each section for specific definitions of the nondimensional
quantities. : -

A . acceleration of vehicle - -
p specific heat at constant pressure ___E
év specific. heat at constent volume

kil negative of z-component of body force per unit mass =
Gr Grashof number, 28(T, - ‘I‘o)fhs/v2

Gy, Grashof number due to rotation, 2B92h4(TZ - To)/v2 i
H heat transferred per unit ares per unit time

h height )
Kq, frictlonal heating parameter, ﬁ(ﬂR)Z/cp

k thermsl conductivity coefficient

P pressure

Pr Prandtl number, cpp/k ) -
yo) nondimensionsl pressure

R radius

Reg Reynolds number due to rotation, th/v

r nondimensional radial coordinate

T radial coordinate

T temperature : .o
t time

U,V,W velocity components in radial, azimuthal, and axial directions,
respectively
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U,V,¥ dimensionless velocity profiles

u,v,w nondimensional velocity components

Y dimensionless angular coordinate in sector

Z nondimensional axial coordinsate

z axial coordinate

B £luid volumetric expansion coefficient, pl:a 1 p)]P
T ratio of specific heats

€ constant, 2B(T; - Ty)

e angular coordinate in inertial coordinate system
B absolute viscoslity coefficient

v kinematic viscosity coefficlent

p density

T dimensionless temperagture difference

¢ dissipation function

Q@ angular coordinste in rotating coordinate system
Q angular velocity

® QR/-/<Fh

Subscripts:

1 center of lower surface

mex maximum

0

unheated state

17



18 : NACA TN 4323
APPENDIX B .
ORDER OF MAGNITUDE OF VELOCITY CQMPONENTS

Instead of the relations (6) s, let a more general dependence of the
velocity components on € be employed:

U = QRe™u V = oR(r + %) W = QRe®w -
o
'—J
T = Rr Z = hz P = poﬂsz(po + e’p) (B1) ©
= po(l - eT) = (T - Ty)/2(Ty - Tp) m,n,? > O
Equations (Bl) are sppropriate for a flow which increases with external
heating and reduces to solid-body rotation when there is no heating. ¥

Substituting into the governing equations (1) to (5), letting h/R -+ 0,
and neglecting compressibility and dissipation terms yield

2 -
ezm(uur + Wu,) - eZn.%? + ert - €f2v = -ezpr + emRenluZZ

P (uv., + wv, + uv/r) + f2u = enReélv (B2)

r Z ZZ

Py =0
In the first of equations (BZ), no term can be of greater order of mag-

nitude then the driving force ert. Hence, m = n =1 = 1. Then equations
(BL) become identical to (6) and equations (B2) become

e(uu, + wu,) + r7 - 2v= -p. + Re&luZZ

e(uv, + wv, + uv/r) + 2u = Re&lvzZ (B3)

P, = 0

If any value other than 1 is chosen for the indices m and n, the
Coriolis term in either one or the other of equations (B3) will dominate,
and a null solution will result. The energy equation becomes

(e/‘r)(u'rr + WT,) = (PrReQ)‘l (B4)
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From the definitions

o an? en?nt
eQ = _V s G-:[‘Q = v2
it follows that
_ G‘I‘g
€= -}
Ren

This accounts for the form of equations (8) to (11).
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Figure 3. - Schematic sketch of configuration for flows in roteting containers.
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Figure 3. - Concluded. Schematic sketch of configuration for flows in
roteting containers.
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Figure 4. - Velocity profiles in rotating cylinder.
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Figure 4. - Concluded. Velocity profiles in rotating cylinder.



2

ap)

To - (T3 - Tp)

=

B e U

R —— o |

)

¥

r————O.Bz R

Figure 5. - Coolant flow locp in cylindrical shield.

z = -1f2

92

222% NL VOVN




NACA TN 4323

Vector velocity
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Figure 6. - Coriolis force in upper half of rotaiing
cylinder.
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